Gata6 in pluripotent stem cells enhance the potential to differentiate into cardiomyocytes

نویسندگان

  • Chang-Hwan Yoon
  • Tae-Won Kim
  • Seok-Jin Koh
  • Young-Eun Choi
  • Jin Hur
  • Yoo-Wook Kwon
  • Hyun-Jai Cho
  • Hyo-Soo Kim
چکیده

Pluripotent stem cell (PSC) variations can cause significant differences in the efficiency of cardiac differentiation. This process is unpredictable, as there is not an adequate indicator at the undifferentiated stage of the PSCs. We compared global gene expression profiles of two PSCs showing significant differences in cardiac differentiation potential. We identified 12 up-regulated genes related to heart development, and we found that 4 genes interacted with multiple genes. Among these genes, Gata6 is the only gene that was significantly induced at the early stage of differentiation of PSCs to cardiomyocytes. Gata6 knock-down in PSCs decreased the efficiency of cardiomyocyte production. In addition, we analyzed 6 mESC lines and 3 iPSC lines and confirmed that a positive correlation exists between Gata6 levels and efficiency of differentiation into cardiomyocytes. In conclusion, Gata6 could be utilized as a biomarker to select the best PSC lines to produce PSC-derived cardiomyocytes for therapeutic purposes. [BMB Reports 2018; 51(2): 85-91].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the role of mico-RNAs in cardiomyocytes differentiation of mesenchymal stem cells

Stem cells are a good alternative for regenerative medicine because of their characteristics such as self-renewal and differentiation potential. They are classified into different types of stem cells including embryonic stem cells, induced pluripotent stem cells, multipotent stem cells, and ultimately uni-potent stem cells. Mesenchymal stem cells extracted from adult tissues. Due to the lack of...

متن کامل

سلول‏های بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری

Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...

متن کامل

فاکتورهای نسخه‌برداری کلیدی موثر در تمایز سلول‌های بنیادی مزانشیمی: مقاله مروری

Stem cells are undifferentiated biological cells that can differentiate into more specialized cells and divide (through mitosis) to produce more stem cells (self-renew). In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. Mesenchymal stem cells (MSCs) are ...

متن کامل

Specification of Hemato-Endothelial-Like Structures and Generation of Hematopoietic Progenitor Cells from Human Pluripotent Stem Cells

 Background and purpose: Human pluripotent stem cells (hPSCs) with the ability to differentiate into adult cells have provided a new perspective for treatment of some diseases. But, the efficiency of differentiation methods to generate hematopoietic progenitor cells (HPCs) is faced with multiple challenges. In the present study, we investigated the formation of hemato-endothelial-like structure...

متن کامل

Differentiation Potential of Nestin (+) and Nestin (-) Cells Derived from Human Bone Marrow Mesenchymal Stem Cells into Functional Insulin Producing Cells

The feasibility of isolating and manipulating mesenchymal stem cells (MSCs) from human patients provides hope for curing numerous disease and disorders. Recent phenotypic analysis showed heterogeneity of MSCs. A nestin progenitor cell is a subpopulation within MSCs which plays a role in pancreas regeneration during embryogenesis. This study aimed to separate nestin (+) cells from human bone mar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2018